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Hydromagnetic stability of parallel flow of an 
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The magnetohydrodynamic and Boussinesq approximations are used on a fully 
ionized ideal fluid with a longitudinal magnetic field. The flow is in a direction 
normal to the gravity vector and all variations in velocity, density and magnetic 
field. The stability characteristics, mainly for normal-mode perturbations, are 
investigated. Two simple problems with discontinuous profiles are solved ana- 
lytically. For a double shear layer, an appropriate range of magnetic field values 
destabilizes the flow. A long wave theory is presented and applied to several 
problems, some of which are destabilized by an appropriate magnetic field. 
Finally, the solution for continuous profiles is presented and shown to decay 
algebraically in time €or any stable stratification. 

1. Introduction 
There exists a rather extensive body of literature on the hydrodynamic stabi- 

lity of ideal parallel flows. A comprehensive review of work done up to 1966 is 
given by Drazin & Howard (1966). Only recently, however, has attention been 
focused on the effect that a magnetic field would have on the stability of parallel 
flow of an ionized fluid. The importance of such studies is indicated both by their 
intrinsic value and by their applicability to various astro- and geophysical 
phenomena such as flows within the sun’s outer layers, the solar wind and the 
earth’s magnetosphere (see e.g. Boller & Stolov 1970). 

This theory would apply mostly to gaseous atmospheres. A scaling analysis is 
performed to determine the conditions under which the equations for a Bous- 
sinesq liquid can be applied to a gas. This also serves to simplify the analytical 
work. 

Diffusive effects are neglected here because of the scale of the phenomena 
considered. We investigate the stability properties of an ideal magnetic fluid 
subjected to small perturbations. Nonlinear effects are not considered here. 

Michael (1955) wrote the first paper on the magnetohydrodynamic stability of 
parallel flow, solving the magnetic version of the Kelvin-Helmholtz problem. 
The magnetic field had a stabilizing effect such that when the magnetic energy 
exceeded the kinetic energy the fluid was rendered completely stable. Subse- 
quent investigators have shown that an appropriate magnetic field can also be 
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destabilizing. Stern (1963) found that Couette flow can be rendered unstable by 
an appropriate piecewise-linear magnetic field. Kent (1966) showed how a variety 
of flows without inflexion points in the velocity profile, such as Poiseuille flow, 
would be destabilized by the addition of an appropriate magnetic field. 

Kent (1968) investigated in some detail the general stability characteristics 
of a homogeneous magnetic fluid. By using the technique of Rosenbluth & Simon 
(1964), which incidentally can be used to solve Stern’s problem, Kent found an 
example for which even a constant magnetic field caused destabilization. The 
velocity profile used had an inflexion point but did not satisfy Fjortoft’s neces- 
sary condition for instability of a non-ionized fluid. One important but negative 
conclusion from this paper (Kent 1968) is that the theory of analytic marginally 
stable solutions, so useful in ordinary hydrodynamic stability of parallel flow, is 
restricted to a highly limited and artificial class of flows in the magnetic case. 

In  the papers by Stern and Kent, the destabilization found to be caused 
by the magnetic field was revealed by asymptotic techniques at  long wave- 
length. Actual growth speeds were not found. In  this paper a double shear-layer 
problem is solved analytically and is shown to be more unstable than the non- 
magnetic problem at various values of the parameters. Analysis of this problem 
sheds light on the nature of the destabilizing effect, although the interpretation 
cannot be extended with complete freedom to problems with continuous velocity 
distributions because the energy transfer terms differ in the two cases. 

The generally stabilizing influence which the magnetic field exerts on the fluid 
is due to a tension which usually acts as a restoring force on disturbances. Never- 
theless, in the non-magnetic problem there is an inherent inefficiency in the 
instability mechanism for most velocity profiles. The perturbations do not make 
use of all the kinetic energy available in the basic flow, as is clearly revealed for 
disturbances of short wavelength in the double shear-layer model. Disturbances 
at one interface are virtually independent of those on the other. When a magnet,ic 
field is included, theentire fluid is ‘tied together’ and this has the effect of making 
available the entire kinetic energy of the flow. For Stern’s problem it is the mag- 
netic Reynolds stresses which contribute to  the instability, but such terms do not 
appear in discontinuous models. 

The stability characteristics of a magnetic fluid are extended throughout this 
paper by the incorporation of variable-density effects. The occasional destabiliz- 
ing influence of the magnetic field also extends t o  the heterogeneous case. Larger 
values of the Richardson number at  marginal stability are found for some velocity 
profiles for appropriate magnetic field configurations. 

Many of the stability characteristics are revealed by an extension to the mag- 
netic problem of the long-wave theory of Drazin & Howard (1961, 1962). An 
approximate eigenvalue relation is derived and yields the exact formulae for the 
wave speeds of the three-layer models to first order in the wavenumber. 

Finally, the continuum solution is given for flows in which the kinetic energy 
exceeds the magnetic energy. The fluid is stable for stable stratification and the 
perturbation shrinks algebraically with time. For zero stratification the dis- 
turbances are neutral. 
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2. The basic problem 
We inveetigate the stability properties of a fully ionized, heterogeneous, non- 

dissipative shearing fluid. Cartesian co-ordinates (x, y, z )  are employed throughout 
the paper. Using a velocity scale V ,  the basic dimensionless velocity is given by 
U .  The dimensionless magnetic field M is given by B = (4rpO)* V M ,  where po 
is the density of the basic state. The parameters describing the basic state are 
functions of x only while the flow and magnetic field direction is along the x axis. 
Gravity g is assumed to be constant and is taken in the z direction. 

The governing equation for the stability of normal-mode perturbations for 
the homogeneous case (po = constant) have been derived in several forms by 
Kent (1968) among others. The generalization of these equations to include the 
effects of stratification under the Bousinesq approximation is derived by Gedzel- 
man (1970) and appears here as three equations, namely, 

D[XDP] - [7$X + Ri] P = 0, (2 .2 )  

f- Y = O ,  Xb "I 2XD2X - (DX)' 
D2Y-[kZ+ 4x2 

where D is the z derivative, W the perturbation vertical velocity, $' E W / (  U - c) ,  
the perturbation amplitude, c = c, + ic, is the complex wave speed, k is the wave- 
number, Y = X@, X = (U  - c ) ~  - 1M2, and Ri = gDpo/po(BU)2 = &(DU)2 is the 
Richardson number. The normal-mode solution assumed has a functional form 

F ( X ,  x ,  t )  = E ( x )  eik(k-ct) .  
given by 

When the fluid is contained by walls at  z = z1,z2 the perturbation vertical 
velocity vanishes there and the boundary conditions are simply 

W ( z )  = 0 at x = z1,x2. 

Variations in the y direction have not been included because an extension of 
Squire's theorem is valid (see Gedzelman 1970). Furthermore, as with the non- 
magnetic problem the existence of a particular complex wave speed implies the 
existence of its complex conjugate. Thus, instability corresponds to any solution 
with a non-real wave speed and stability or, strictly speaking neutrality cor- 
responds to solutions with real wave speeds. 

Many of the integral theorems used on the non-magnetic problem lose their 
usefulness when extended to the magnetic problem. Only the semicircle theorem 
(see e.g. Gilman 1967) remains of much value. This places a greater restriction 
on both the maximum possible growth rate and the range of phase speeds for 
unstable waves but does not imply that the magnetic field is always stabilizing. 

In  the non-magnetic homogeneous problem we know that, for marginal sta- 
bility, U = c at  the inflexion point. Inspection of the governing equation shows 
that, because of this the coefficients are not singular. Analogously, one would 
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expect to find a marginally unstable solution when the coefficients of (2.3) are 
not singular. The quantity 2XD2X - (DX)2 must therefore have zeros of the same 
order as X2. Using a Taylor series expansion around x,, where X(z , )  = 0, we 
have 

where q = z - zo and the subscript indicates evaluation at x o .  To zeroth order 
we have 2X,D2Xo- (DXo)2 = 0 and since X ,  = 0, so does DX,.  Noting that 
X ,  = D X ,  = 0 we then have to higher order in q 

2[X0 + qDX,  + . . . ]  [D2X, + qD3X, + . . .] - [DXo + 7D2Xo + . . . I 2 ,  

. 

~ 3 [ ~ D s X , D 2 X 0 ]  = 0, q4[-&D2X, D4X0 + +(D3XJ2]  + 0. 

If D2Xo = 0 then the coefficient of q4 is also non-zero and D3X0 = 0. This implies 
that 

are conditions of marginal stability as Kent (1968)  has already shown through 
more rigorous argument. Thus the theory of analytic marginally stable solutions 
is restricted to a highly artificial and limited class of profiles for the magnetic 
problem. Generally, the governing equation has solutions with logarithmio 
singularities and it is perhaps this feature which further complicates an already 
difficult problem. Logarithmic terms are seen to appear in the problems attacked 
in $4. 

Equations (2.1)-(2.3) were derived with a liquid in mind. It is appropriate to 
perform a scaling analysis to see under what conditions these equations will 
describe the behaviour of a gas. 

When the fluid under consideration is an ideal gas the equation of state becomes 

U, = G, ..Wo = 0, D2UoDNo-D2MoDUo = 0, 

P = pRT, ( 2 . 4 )  

where P is the pressure, R is the ideal-gas constant and T is the absolute tempera- 
ture. The thermal equation now describes the conservation of potential tempera- 
ture; 

where 8 is defined by Poisson’s equation 

dBldT = 0, (2.5) 

Once again the equations are non-dimensionalized in order to determine under 
what conditions (2.2) is valid for a gas. The velocity scale is again given by V .  
We take E to be the amplitude of the velocity perturbation. An average magnitude 
for a variable is indicated by an overbar. We write 

F = PRF, Pa = FPs, pa = PpS, 

where subscript a indicates undisturbed state. 
The variables are scaled in the following manner: 

P =Fp,(1+pp1+172p2+ ...), 

P = isp, (1 + P A  +Pp, + . . . ), 
e = Oe8(i+iJel+dP82+ ...), 
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where the tilde indicates the perturbation amplitude. The magnetic field B is 
scaled to be 

B = (47p)+ v(B,+€bb,+€2b,+ ...). 

The precise value of P is determined by balancing the pressure term with the 
inertial term in the horizontal momentum equation, and thus 

P = EV2pp.  

p” = B = ( C V / C D ) F .  

From Poisson’s equation we find that 

Dropping the subscript 1, the scaled continuity equation appears as 

I n  order that the continuity equation should take the form 

aupx + awlax = o, 

Defining a new magnetic field such that 

M = B,/(P,)*, h = b/ (Ps)4  
and a new pressure 

and stating that 

n = Pp,/p, + Nh,, 

d8/dx = /3(z), 

we find that the remaining equations reduce to those appropriate for a Bous- 
sinesq liquid as long as inequalities (2.8) are satisfied. The first inequality 
requires that the percentage change in the density be small and the second 
requires that the basic velocity be much smaller than the equivalent shallow- 
water wave speed, i.e. that the Froude number be much smaller than unity; 

When the inequalities (2.8) are obeyed, (2.2) is a valid form for the governing 
equation of an ideal gas. 

3. Problems 
The magnetic analogue of the Kelvin-Helmholtz problem was solved by 

Michael (1955). The magnetic field exerts a stabilizing influence owing to the 
‘tension’ which it imparts to the fluid. Models with continuous profiles of velocity, 
density and magnetic field behave in a more complicated manner than does this 
simple two-layer model. In  this section two three-layer problems are solved. These 
exhibit several characteristics of flows with continuous profiles but retain the 
simplicity of solution characteristics of the Kelvin-Helmholtz problem. 
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In each layer of constant U ,  p and M the governing equation (2.1) reduces to 

] (D2W - k2W} = 0. 

Boundary conditions at z = +a require the perturbation vertical velocity to 
remain finite. Interfacial boundary conditions call for the continuity of normal 
velocity and continuity of pressure and are given respectively as 

- (U-c)DW+M2D (3.3) 

where A, indicates the jump in the bracketed quantity across the interface. 

T h e  three-layer jet  

This problem has been considered by Axford (1960) without a magnetic field in 
the inner region. It is described by 

The resulting wave speeds are given by 

c1 = $(z  - a2) +[(2 - a2)2- (2 - a2)p + 2a2q]S, (3.4) 

c2 = a2_+~[a4-2a223+2(2-a2)q]t, (3.5) 

and represent the varicose and sinuous waves respectively. Here 

p = l-N& q = N : f G / k ,  G = (Ap/po)g7 a2 = 1-ee-2k. 

In  the long wavelength limit (a2 --f 0) of the homogeneous non-magnetic problem 
both these waves are marginally stable (unstable for k > 0). For k = 0 the vari- 
cose wave travels with the maximum velocity of the current and the sinuous wave 
with the minimum. 

For the homogeneous case at k = 0 the sinuous waves travel with speed &MI 
and are completely stable. From (3.5) we find that any M2, 2 4 or any M,Z 3 1.0 
rules out instability and, as with the varicose wave, the magnetic field serves only 
as a stabilizing agent. 

For M i  > M2, the sinuous wave dominates whilefor M2, > M i ,  the varicose wave 
dominates. Not much is gained by investigating the stratified problem which 
also makes clear the stabilizing influence of the magnetic field. 

A t  this point it is appropriate to present an extension of a heuristic formula 
developed by Backus (as presented by Drazin & Howard (1966)) to the magnetic 
problem for finding the wave speed for small k of the sinuous disturbances 
in an unbounded fluid. The logic behind the argument is that, for sufficiently 
long wavelength disturbances of the sinuous type, the jet can be treated essen- 
tially as st string. Disturbances die out with a scale height of l / k  9 L, where L 
is the width of the jet. The height of the disturbance is assumed to be given 

(3.6) 
approximately by 7 = yo e-klzl eikbct) ,  
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A force balance equation may be written in the z direction for half a wavelength 
as 

(3.7) 

where the inertial term is balanced, from left to right, by centrifugal, buoyancy 
and magnetic forces. r is the radius of curvature. If (3.6) is substituted into (3.7) 
the inertial term becomes 

The centrifugal term may be rewritten as 

since the major contribution comes from the vicinity of the jet (where U = 0) .  
The buoyancy force becomes simply 

-9  A P Y ~ Z  z g(Pa-p-a)To* s 
Using the fact that the magnetic field lines remain parallel to the flow, 

F., = M avpx 
and writing M = MB +& (a background plus a variable part), we get 

J p M 2 d z  z -pk2y0 i J & , ( 2 M B + ~ ) d z - 2 M ~ k p ~ , ,  s 
and (3.7) becomes 

Applying this to the three-layer jet model, we obtain 

c2 = - k [ l - M ~ + M q ] + G / 2 k + l l ~ .  

To first order for small k,  the discriminant of (3.5) gives exactly the same result. 
We shall have further cause to refer to this argument when considering the general 
expansion technique for long wavelengths. Let us note here that any basic 
magnetic field is sufficient to stabilize long wave, sinuous disturbances in such a 
modelsimply because there is not enough kinetic energy of the basic flow available 
to be converted into the magnetic energy of the disturbances. 

Double shear layer 

We now consider the antisymmetric double shear layer given by 
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Because the flow indicates no preferred direction, it seems plausible that insta- 
bility will set in as a wave with c, = 0 so that the principle of ‘exchange of 
stabilities ’ would then be valid. Although this is often the case for antisymmetric 
flows, it need not be so. Howard (1963) showed that the curve c = 0 in the 
G, k plane does not define the stability boundary for the antisymmetric double 
shear layer without a magnetic field and that instability sets in as two waves 
travelling with equal but opposite velocities. While there are unstable solutions 
with c, = 0,  these lie embedded entirely within the unstable region. 

When an aligned magnetic field is superposed on this pattern several new 
interesting features arise. The magnetic field actually destabilizes the problem 
in many instances. This example therefore proves to yield the first complete 
analytical solution to an ideal magnetic problem of parallel flow in which the 
magnetic field destabilizes the fluid. There are even ranges of the parameters 
for which this destabilization occurs when the magnetic field is constant. We now 
proceed to present an analysis of the problem. 

After the kinematic boundary conditions have been satisfied the solution for 
W is given by 

(3.9) I ( A  + Be2k) (1 - c) e-k(5-l), z 3 1, 

W = Ac e2k e-@+l) - Bc e2k ekQ-1), I z I < 1, { - (Ae2k+B)  (l+c)ek@+l), x < - 1 .  

The dynamical boundary conditions at z - 5 1 respectively are given by 

[(l- c ) ~  - c2-  Mf +Hi - G/k] A e-2k + [( 1 - c ) ~  +c2 - MI - M i  - G/k] B = 0, 

( 3 . 1 0 ~ )  

+[(c+ 1 ) 2 - ~ 2 + M i - M ~ - G / k ] B e - 2 k  = 0. (3.10b) 

and [c2 + ( 1  + c ) ~ -  Nt - H: - G/E] A 

We defme M = l-M;-G/k, a2= l-e-4k.  

The solution for the eigenvalue c is obtained by substituting (3.10) into (3.9) 
and we have 

c 2 = - 1 ,  2 (  -Mfj-a2)  ~ Q ( a 4 - 2 u 2 ( m - M ~ ) + ( 1 - a 2 )  [N+Mi]2)4. (3.11) 

Instability can arise in any of three manners. Since (3.11) is of the form 

c2 = S f T*, 

we see that c has an imaginary part if S < 0 or T > S2 or T < 0 and thus the 
wave is unstable. An example of a stability diagram is presented in figure 1, where 
we use the case of M i  = 0.2 and Hf = 0. As long as we are within aregion bounded 
by any one of the three marginal stability curves T = 0, S = 0 and T = 8 2 ,  there 
is an instability. 

Before analysing the problem in complete generality, let us consider the homo- 
geneous case with no background magnetic field (G = 0, M2, = 0) .  Equation (3.11) 
then becomes 

c2 = &(a2+Xi- 1)+&[a4-2a2(1-M~) + ( l - ~ ~ ~ ) ( l + M i ) ~ ] 8 .  (3.12) 
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FIGURE I. Schematic diagram for marginal stability curves of double shear layer. 
Arrows indicate the direction of instability. 

Instability will arise from S < 0 whenever a2 < a; = 1 - M i  and will be manifest 
with c, = 0. For 1M; > 1.0 this mode disappears. Instability will occur through 
T > S2 whenever 

It is seen that as the magnetic field approaches zero this means of producing an 
instability vanishes. The third mode for producing an unstable wave occurs when 
T < 0. Here c2 and hence c is complex so that c, $- 0 Since increasing M i  serves 
only to increase T, we find that, when M i  > 4, T > 0 and instability will be mani- 
fest by stationary waves only (c, = 0) .  Instability for T < 0 will occur for all 

a2 > a$ = 4 ( 3 + M ~ - [ ( 3 3 - M 3 2 - 4 ( M ~ + 1 ) * ] * ] .  

< a$ < 1. Thus for an inter- 
mediate range of wavelengths a$,,s < a2 < a%, the waves are stable. Instability 
for short wavelengths is governed by l' < 0 and for long wavelengths by T > S2. 

Growth rate curves for various values of Mz are given in figures 2 (a) and (b) .  
I n  the case M i  = 1.0 greater instability for all a2 < 0.718 (k < 0.316) is realized 
than for the non-magnetic problem. At a2 = 0 we have 

a2 < a$,,s = 4Mi/( 1 + 

For 0-295 < M ;  < 0.5 we find that 0 c a: < 

c2 = * ( M i  - 1) & &(Mi  + 1).  

The negative root results in instability no matter how large the magnetic field 
Mi.  Furthermore, for values of Hi as great as 5.0 themagnetic problem hasgreater 
instability than the non-magnetic problem at sufficiently long wavelengths. 

We may obtain some insight into the destabilizing influence. When a2 = 1, 
we find for M i  = 0 that 

c 2 -  - 2 % ;  1' c =  *(l+i). 
50 F L M  58  
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FIGURE 2. Growth rates for homogeneous double shear layer with M ,  = 0 ;  
(a)  M i  = 0, I ,  2. (a) Mi = 0.25, 0.4, 0.5. - , c, = 0 ;  ---, c, * 0. 

Substituting this into (3.10b) yields A N Be-2k. Therefore, by (3.17), any solu- 
tion of magnitude Be2” a t  z = 1 has magnitude B at z = - 1. Since 1% is large, the 
magnitude of any solution decreases rapidly from either interface. We have, as 
Howard ( 1963) mentioned, two essentially separate instabilities, one at each inter- 
face, travelling at the average velocity around that interface. For the magnetic 
problem the situation is different. Taking the wave speed for the case Mg = 1 we 
have 

Upon substituting c into (3.10) we obtain A w B, so that the disturbance main- 
tains its amplitude throughout the intermediate layer. Thus, there are two in- 
fluences that the magnetic field exerts on a fluid. A magnetic field in a fluid of 
infinite conductivity adds a tension to the fluid so that it becomes more difficult 
to produce an instability. But the field also adds a cohesiveness to the fluid which 
it may not have possessed before. This cohesiveness may serve either to increase 
or produce instability by making available an extra energy source which the 
non-magnetic fluid could not have used. Thus the two semi-infinite layers are 
always tied together in the magnetic problem so that there is more kinetic energy 
of the basic flow available for transformation to perturbation energy than in the 
non-magnetic problem. It must be mentioned that this ‘cohesiveness’ is, in fact, 
the tension of the magnetic field lines, so that the two influences spring from 
the same source, but it is clear that the behaviour of this one force may manifest 
itself in a variety of ways. 

We now generalize the discussion to include the effects of a background mag- 
netic field MI and stratification G .  For this problem m < 1. Consider first the case 
M i  = 0. We find that X2 - T = a2m2, so that instability may arise by only two 
means (S  < 0, T < 0). For X > 0 instability occurs only with T < 0, i.e. when 

m > m, = &/(a+ 1). 

c2 = - e-4k. c = i e-Zk. 
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1 .o 

FIGURE 3. Marginal stability curves for (a)  various Mi values (numbers by curves), 
MI = 0; ( b )  M i  = M ;  = 0; M i  = M2 1 -  - 0-1 . 

When we include the effects of Mg we find that T may be greater than S2.  
Setting S2 = T we obtain 

For all m with values between these two roots there is instability. At .Mt = 0 
this mode is degenerate, so that no instability may occur in this way for the non- 
magnetic problem. Instability is guaranteed for S < 0 or for m > m, = a2 +.Mi. 
Finally, when T < 0 we have instability with c, = 0 and this occurs when rn 
takes values between the two roots 

mT = - [ ( I - & )  2M;+2a2& 2(2a2(1 -~2)2Mi( l -M~)+a6)~] /2 (1 -a2) .  

Beyond Hg = 4 this source of instability vanishes. 
A comparison of the marginal stability curves for various M i  values is given in 

figure 3 (a). The apparently unreasonable result that, as M i  decreases, the bottom 
line of the stability boundary departs further from the stability boundary for 
M i  = 0 is resolved by noticing that the curves designated with the asterisk 
(* which corresponds to the mode T < 0 )  coincide with the .Mi = 0 curve in the 
limit of 3 0. We see that the presence of an appropriate magnetic field in the 
central layer may destabilize an otherwise stable configuration for the non- 
magnetic problem a t  any wavenumber and for any value of G / k  up to  1.0. 

The application of a constant magnetic field may also destabilize the double 
shear-layer problem for a considerable range of wave-numbers. Consider the 
situation depicted in figure 3(b) .  We see that the neutral curve for M i  = M ;  = 1 
lies above that for M i  = M: = 0.1 for all a2 > 0.15, so that instability occurs for 
greater stratification with a magnetic field for all reasonably short waves. As 
the magnetic field increases destabilization occurs for an increasingly restricted 
range of wavenumbers until at M 2  z 0.3, where the destabilizing effect vanishes. 

50-2 
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4. Long wave theory 
We now consider the stability characteristics of long wavelength disturbances 

in an unbounded fluid. The approach used here represents an extension of the 
treatments of Drazin & Howard (1961, 1962) to a magnetic fluid. There are two 
equivalent techniques which may be used to obtain an approximate equation for 
the complex wave speed. One is an integral equation approach and the other is a 
double series expansion given in terms of the wavenumber k and the stratifica- 
tion G. 

The eigenvalue relation 

A t  wavenumber zero, any finite stratification will stabilize the flow. It is neces- 
sary to use a double series expansion so that one can determine the critical 
stratification at  small wavenumbers. 

It is convenient to express our governing equation (2.3) as 

D[XDB’] - k2XF + GDAF = 0, 
where we have defined 

The subscripts & MI are used throughout this chapter to denote the z values at 
which the parameters are given. Equation (4.1) is valid as long as G/g < 1, i.e. 
fractional variations in density are small. 

A straightforward double expansion scheme given in powers of k and G does 
not converge uniformly for an unbounded fluid. An alternative procedure is 
necessary. Under the conditions that X ,  G -f constant as IzI -f co and 

2XD’X - (DX)’ +%lax s,I x2 
converges, it is guaranteed that, as 1x1 -f MI, equation (2.3) becomes 

D’Y - k2Y = 0, 

so that asymptotically Y behaves like e-klsl. Because X approaches a constant, F 
exhibits the same asymptotic behaviour as Y and we thus find it convenient to 
write 

F+ = e-’ezf;(z), F- = e”+(x). (4.2) 

These two solutions must match a t  x = 0, so that the internal boundary condition 
is 

(F*DF--ELDF+)I,=, = 0. (4.3) 

(4.4) 

Substitution of (4.2) into (4.3) yields 

f ( 0 )  D+(O) - + ( O )  a l 0 )  - 2k$(O) +(O) = 0. 

The double series expansions for E(z) and cD(z), are written as 

(4.5) 
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When we substitute (4.2) and (4.5) into (4.1) and equate powers of k and G 

(4.6) 

(4.7) 

we obtain the following recursion relations for & 3  and di, j :  

DCXDd, jl = - D[X#i-l, 31 - XWi-1, j + Dh#i, j-1, 

mw,, jl = D[XEi-l, 31 + XXi-1, j + DXi, j-1, 

where q5i,j = 0 for i < 0 o r j  < 0, and 

where 

becomes 

= 0 for i < 0 o r j  < 0. 
After some manipulation of the second-order terms the eigenvalue formula 

ax 

x [ k ( X - X  -,)+ G(l+h)]+ ... = 0. 

k[X, +X-,] - 2G+J-mx [k(X-X,) + G(1 - A ) ]  

(4.8) 
As long as the growth speed is non-zero this series is convergent. The proof is 

somewhat longer than that given by Drazin & Howard (1962) but follows essen- 
tially the same line of reasoning. For the details the reader is referred to Gedzel- 
man (1970). 

An expression equivalent to (4.8) can be obtained for jet profiles by using an 
integral equation approach. Once again this represents a straightforward exten- 
sion of the argument of Drazin & Howard (1962) to the case of a stratified, 
magnetic fluid. The eigenvalue relation is given by setting the Fredholm deter- 
minant equal to zero, i.e. 

where 

- k X ,  sgn (zi - z j )  
1 

The first two terms for the eigenvalue relation are given by 

Examples 

At this point it is of interest to see if (4.8) may be applied with success to actual 
examples for which complete solutions do exist. It is unfortunate that for mag- 
netic fluids the only extant solutions are for problems with discontinuous profiles. 
Nevertheless, close agreement between the results of (4.12) and the actual solu- 
tions should be quite encouraging since (4.12) is based on a series expansion better 
suited to describing continuous profiles. 

Recalling from $ 3  that velocities have been normalized, (4.8) yields to first 

order k [ 2 ~ ~ - M ~ - H Z , + 2 ] - 2 2 6  = 0, 

which is exact for the Kelvin-Helmholtz problem. For the double shear-layer 
model equation (4.8), when solved for c2, yields 

c2 = -*(I - M ;  -M2,- G/k- 4k) +[(l- M$ - M!- G / k -  4k) 

- 4k( 1 - M2, - G/k + M;)2 + 4M;( I - M2, - G/k)2]4. (4.9) 
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When one approximates the exact solution (3.1 1) for long waves by noting that 

In  the jet model, the first-order approximation for the wave speed is given by 
a2 g 1 - 4k, one obtains (4.9). 

2 ~ 2  = M2, + M2_ + Glk.  

Marginal stability occurs only when M, and M-, are zero and Glk -+ 0 as k + 0. 
With no background field the approximation to next order gives 

00 

2c2 = - k j  ( U 2 - B 2 ) d z + 2 G .  
-03  

(4.10) 

These results match the results of the heuristic argument given by (3.8) for 
the long wavelength disturbances of the sinuous wave. Equation (4.10) therefore 
gives the appropriate long wavelength solution for the sinuous wave of the three- 
layer jet. 

A general form for the approximate solution of the varicose disturbance has 
not been obtained. Nevertheless, in the case of the three-layer jet it is simple 
enough to extract from (4.8). Multiplying the results of (4.8) by [( 1 - c ) ~  - M!] 
produces 

[( 1 - c ) ~ -  M i ]  [c2 - .M? - G / k ]  + k [ l  - 2~ - .M$ + M2, + G/kI2 = 0. 

One of the roots at E = 0 is c = 1 &M,. This is marginally stable for Mo = 0 and 
G/E .+ 0. Taking No = 0 and noting that since G - 1 z 0 we can set G equal to zero 
in all but the h s t  bracket, we then have 

c = 1~-$[ -41c( l -M~-G/k)]~ .  

When the exact solution (3.4) is approximated to first order in small k it  yields 

c = l - k ~ ~ [ - 4 1 c ( l - M ~ - G / k ) ] ~ ~ ;  

the correspondence between the two formulae for small k is quite satisfying. 

Stabilitity boundaries for shear layers 

Since the eigenvalue relation (4.8) converges for all lc and G such that ci =+ 0 this 
suggests that we might look more closely at (4.8) for a reasonably accurate esti- 
mate of the critical Richardson number. We shall restrict consideration to the 
case when U and h are a,ntisymmetric and .M is symmetric about the point z = 0. 
The background magnetic field is zero. Physically we can expect instability to 
be manifest at c, = 0 although for small enough magnetic field values certain 
examples may exhibit instability as two waves travelling at equal but opposite 
velocities. Although we shall not prove that cr = 0 when ci = 0 we shall assume 
it to be true in the profiles we consider. In  the limit as c + 0, equation (4.8) be- 
comes 

2k - (M2, + MFm) - 2G +ja [k(  U 2  - M 2 -  1 +Ill%) + G( I - A ) ]  
- w  

dz 
x [ k ( U 2 - M 2 - l + . M 2 , ) + G ( l + h ) ] u 2 - . M 2 .  (4.11) 
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Whatever U = k M the integrand is singular and thus (4.1 1) is not strictly speak- 
ing integrable. This difficulty can be circumvented by a method used by Drazin 
& Howard (1961). What is done is to subtract a value from the integrand which 
is equal to the integrand at  the singular point and then, expressing the subtracted 
quantity as an exact differential, add it outside the integral. Noting first that we 
can write 

U 2 - M 2  dz U + M  2(MDU-UDM)'  

and making use of the symmetry properties we have required, (4.11) then be- 

1 U-M 1 -="[.-I 

We now consider two problems. In  the derivative of (4.12) we have assumed 
differentiability of U ,  p and M ,  so that we cannot use the discontinuous models. 
The two problems chosen are among the small number of examples for which the 
stability boundary is known in the non-magnetic case. Unfortunately, for pur- 
poses of comparison no analytic expressions exist for a stability boundary for 
a magnetic flow. 

- 1 ,  x < - 1 ,  

U = h =  2, I Z ] < l ,  1 1, 2 > 1. 

For Goldstein's problem 

In the limit M = 0, equation (4.12) gives G = k - $k2 for the stability boundary, 
which is exact to secondIorder. For Holmboe's problem, 

U = h = tanhz. 

The non-magnetic limit of (4.12) gives B = k( 1 - k), which is exact. 
Now add to Goldstein's problem a magnetic field given by 

121 > 1, 

0 < Z  < 1, 

- 1 < z < 0. Mn(1+z), 
Equation (4.12) becomes 

(4.13) 
1 + 

At M i  = 0 this reduces to the non-magnetic result k - $k2. For small M i  > 0 we 
see that the magnetic field will have a destabilizing influence because the mag- 
netic field increases the critical stratification. A plot of (4.13) (figure 4) indicates 
that the magnetic field is destabilizing for all values of Aft < 1-7 and stabilizing 
for M i  > 1.7. 

Next, consider Holmboe's example with N = M,sechz. Equation (4.12) then 
takes the form 

tanh2x 
G = h+k2Jr [tanh2z--MgsechZz- tanhzz - M i  sech2 x 

] d z .  (4.14) 
Mi sech z 

(1 + Mi)* tanh2z - M i  sech2 x + 
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Mi 
FIUURE 4. Destabilization to O ( k 2 )  for Goldstein’s problem. 

This has been obtained by noting that at  U = M we have 

tanh2z = M$sech2z = M$(1-tanh2z), 

so that tanh2 z = Mg/( 1 + M i ) .  After all the integrations have been performed, 
(4.14) reduces to  

Observing that 

for all Mg > 0 we find that the critical stratification is smaller with a magnetic 
field present and thus the magnetic field has a stabilizing effect. 

Even for the simple example just considered the computations are quite 
lengthy. It is possible to obtain some information about the dependence of the 
stability on the introduction of a small magnetic field without making such 
lengthy calculations. We take the derivative of Gcrit with respect to the mag- 
netic field amplitude. When this derivative is positive at zero magnetic field 
we know that an appropriately small magnetic field is destabilizing. 

It is convenient to define M2(z)  = 2 M g f 2 ( x )  withf(0) = 1 and Df(0) = 0. Before 
taking the derivative of (4.12) with respect to Mg we expand the parameters in a 
Taylor series about x = 0. 

We obtain 

Let us return to Holmboe’s problem. When M = Hosechz, (4.15) gives zero 
as expected. This gives insufficient information as to the effect which the magnetic 
field exerts on the fluid and so is useless. However, if M = No sech2 z ,  equation 

(4.15) yields -1 dG =/~(2sech2z-sech4z)dz > 0, 

and this is greater than zero since the integrand is positive for all x .  Thus, a small 
magnetic field of the form M0 sech2x will be destabilizing. 

dM; JG=O 
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5. The solution for continuous problems 
When an example does not exhibit instability to normal-mode disturbances 

it is appropriate to solve the initial-value problem. The method used here is 
essentially that used by Case (1960), Kent (1968) and others, and thus will 
merely be outlined here. 

In  the neighbourhood of a second-order zero of X ,  equation (2.2) has the 
solutions 

3. = r V - 2  #., F,, = ~--(Y+!Z) #2, 

where 7 = x - zo, X ( z o )  = 0 and #1, are analytic functions for small q.:We define 

[: (DU,)Z-(D3fo)2 % I” ‘ v =  -+ 

The subscript zero indicates evaluation of a variable at zo. We restrict our atten- 
tion to the case where (DUJ2 - (DM,)2 > 0 and M, = 0 so that small changes 
in c correspond linearly to small changes in 7. 

The governing equation is given by 

D[XDFp]-[k2X+R,JF’,  = (ik)-1{[2U+~+ilca/at][Dz-k2]F+2(DU)DF}t=o, 
(5.1) 

where Fp is the Laplace transform of F and the right-hand side of (5.1) represents 
the initial perturbation. The equation is solved by the method of Green’s func- 
tions and when the inverse transforms are taken at large time t the dominant 
behaviour emerges and is given by Fcc t&-l, so that for stable stratification the 
solution decays algebraically in time and for zero stratification Fcc const. The 
last result differs from that of Kent (1968) only because Kent used a delta- 
function initial disturbance. 

Most of the work done in this article formed part of the doctoral dissertation 
of the author, completed a t  Massachusetts Institute of Technology. I feel 
honoured to have had Professor Victor P. Starr as my thesis advisor. I would 
also like to thank Professors Norman Phillips, Louis N. Howard, Erik Mollo- 
Christensen, Peter Gilman and Harold Stolov for clarification and guidance on a 
number of points. Financial support has come from NSP grant GA 1310-X and 
NSF GA 17454 and NSP GA 33710X. Lamont-Doherty Geological Observatory, 
Columbia University, contribution 1966. 
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